Ultrahigh‐Power Pseudocapacitors Based on Ordered Porous Heterostructures of Electron‐Correlated Oxides
نویسندگان
چکیده
Nanostructured transition-metal oxides can store high-density energy in fast surface redox reactions, but their poor conductivity causes remarkable reductions in the energy storage of most pseudocapacitors at high power delivery (fast charge/discharge rates). Here it is shown that electron-correlated oxide hybrid electrodes made of nanocrystalline vanadium sesquioxide and manganese dioxide with 3D and bicontinuous nanoporous architecture (NP V2O3/MnO2) have enhanced conductivity because of metallization of electron-correlated V2O3 skeleton via insulator-to-metal transition. The conductive V2O3 skeleton at ambient temperature enables fast electron and ion transports in the entire electrode and facilitates charge transfer at abundant V2O3/MnO2 interface. These merits significantly improve the pseudocapacitive behavior and rate capability of the constituent MnO2. Symmetric pseudocapacitors assembled with binder-free NP V2O3/MnO2 electrodes deliver ultrahigh electrical powers (up to ≈422 W cm23) while maintaining the high volumetric energy of thin-film lithium battery with excellent stability.
منابع مشابه
A General Electrode Design Strategy for Flexible Fiber Micro‐Pseudocapacitors Combining Ultrahigh Energy and Power Delivery
Herein, a general strategy is proposed to boost the energy storage capability of pseudocapacitive materials (i.e., MnO2) to their theoretical limits in unconventional 1D fiber configuration by rationally designing bicontinuous porous Ni skeleton@metal wire "sheath-core" metallic scaffold as a versatile host. As a proof of concept, the 1D metallic scaffold supported-MnO2 fiber electrode is demon...
متن کاملNanostructured Mn-based oxides for electrochemical energy storage and conversion.
Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and p...
متن کاملLarge-scale synthesis of hybrid metal oxides through metal redox mechanism for high-performance pseudocapacitors
Electrochemical performance and production cost are the main concerns for the practical application of supercapacitors. Here we report a simple and universally applicable method to prepare hybrid metal oxides by metal redox reaction utilizing the inherent reducibility of metals and oxidbility of for the first time. As an example, Ni(OH)2/MnO2 hybrid nanosheets (NMNSs) are grown for supercapacit...
متن کاملQuasi 2D Ultrahigh Carrier Density in a Complex Oxide BrokenGap Heterojunction
DOI: 10.1002/admi.201500432 however, only a few oxides accommodating high electron density confined to low dimensions.[12,17–21] Filling this materials gap would provide qualitatively new opportunities in the field of nanoscale oxide electronic devices including novel plasmonic and high charge-gain devices. NdTiO3 (NTO) and SrTiO3 (STO) are classified as a Mott and a band insulator, respectivel...
متن کاملOn‐Chip Micro‐Pseudocapacitors for Ultrahigh Energy and Power Delivery
Microscale supercapapcitors based on hierarchical nanoporous hybrid electrodes consisting of 3D bicontinuous nanoporous gold and pseudocapacitive manganese oxide deliver an excellent stack capacitance of 99.1 F cm-3 and a high energy density of 12.7 mW h cm-3 with a retained high power density of 46.6 W cm-3.
متن کامل